A geometric approach to (semi)-groups defined by automata via dual transducers
نویسندگان
چکیده
We give a geometric approach to groups defined by automata via the notion of enriched dual of an inverse transducer. Using this geometric correspondence we first provide some finiteness results, then we consider groups generated by the dual of Cayley type of machines. Lastly, we address the problem of the study of the action of these groups in the boundary. We show that examples of groups having essentially free actions without critical points lie in the class of groups defined by the transducers whose enriched dual generate a torsion-free semigroup. Finally, we provide necessary and sufficient conditions to have finite Schreier graphs on the boundary yielding to the decidability of the algorithmic problem of checking the existence of Schreier graphs on the boundary whose cardinalities are upper bounded by some fixed integer.
منابع مشابه
Freeness of automata groups vs boundary dynamics
We prove that the boundary dynamics of the (semi)group generated by the enriched dual transducer characterizes the algebraic property of being free for an automaton group. We specialize this result to the class of bireversible transducers and we show that the property of being not free is equivalent to have a finite Schreier graph in the boundary of the enriched dual pointed on some essentially...
متن کاملIterating Inverse Binary Transducers
We study iterated transductions defined by a class of inverse transducers over the binary alphabet. The transduction semigroups of these automata turn out to be free Abelian groups and the orbits of finite words can be described as affine subspaces in a suitable geometry defined by the generators of these groups. We show that iterated transductions are rational for a subclass of our automata.
متن کاملOn Torsion-Free Semigroups Generated by Invertible Reversible Mealy Automata
This paper addresses the torsion problem for a class of automaton semigroups, defined as semigroups of transformations induced by Mealy automata, aka letter-by-letter transducers with the same input and output alphabet. The torsion problem is undecidable for automaton semigroups in general, but is known to be solvable within the well-studied class of (semi)groups generated by invertible bounded...
متن کاملIterating Invertible Binary Transducers
We study iterated transductions defined by a class of invertible transducers over the binary alphabet. The transduction semigroups of these automata turn out to be free Abelian groups and the orbits of finite words can be described as affine subspaces in a suitable geometry defined by the generators of these groups. We show that iterated transductions are rational for a subclass of our automata.
متن کاملA tensor product approach to the abstract partial fourier transforms over semi-direct product groups
In this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the Fourier transform. As a consequence, we extend the fundamental theorems of Abelian Fourier transform to non-Abelian case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1403.1722 شماره
صفحات -
تاریخ انتشار 2014